ANFA 2021 | The role of the physical environment on memorization of experiences: perspectives
top of page
WIX BANNER TÍTULOS.jpg

ANFA 2021 | The role of the physical environment on memorization of experiences: perspectives

By Andréa de Paiva


This paper is concerned with the links between episodic memory and the physical environment. How does the physical environment play a role in episodic memory encoding of events and experiences? To what extent could encoding of memories be affected by the surroundings of the space where they were first experienced? Would we have stronger memories about our experiences depending on where we were when we first experienced them?

The internet and online video conferencing allowed people to engage in a variety of activities from one same place. This situation was intensified recently, due to the COVID-19 pandemic and the increase of home office and homeschooling. If environments are an important element to support episodic memory encoding, perhaps some of the spaces we have been designing are not supporting memorization of experiences as they could be in this new context of using only the home – or a room at home – to engage in so many different activities.

The purpose of this paper is to investigate the existing research on the possible connections between spaces and episodic memories of events and experiences, linking disconnected findings, pointing gaps and possibilities for future research. The investigation of such questions can lead to better understanding about how the physical environment can affect its users and their memories of what is experienced there. From workplaces to school and homes, these are all spaces where individuals spend a great portion of their lives and that could be affecting the memories they create for their lived experiences.


To access the poster pdf, click here.


Would you like to know more about the subject? Follow us on Facebook or Instagram! =)





References:


Aminoff, E. M., Kveraga, K., & Bar, M. (2013). The role of the parahippocampal cortex in cognition. Trends in cognitive sciences, 17(8), 379–390.

Bar, M., & Aminoff, E. (2003). Cortical analysis of visual context. Neuron. 38(2), 347-58.

Bar, M., Aminoff, E. & Schacter, D. L. (2008). Scenes unseen: the parahippocampal cortex intrinsically subserves contextual associations, not scenes or places per se. The Journal of Neuroscience, 28(34), 8539–8544.

Berman, M. G., Jonides, J., & Kaplan, S. (2008). The cognitive benefits of interacting with nature. Psychological science, 19(12), 1207–1212.

Brown S. C., & Craik F. I. M. (2000). Encoding and retrieval of information In Tulving E. & Craik F. I. M. (Eds.), The Oxford Handbook of Memory (pp. 93–107). New York, NY: Oxford University Press

Buchman A. S., Boyle P. A., Yu L., Shah R. C., Wilson R. S., Bennett D. A. (2012). Total daily physical activity and the risk of AD and cognitive decline in older adults. Neurology 78, 1323–1329

Damásio, A (2005) Descartes Error: Emotion, reason and the Human Brain. Penguin Books; Illustrated edition (September 27, 2005)

Dadvand, P., Nieuwenhuijsen, M.J., Esnaola, M., Forns, J., Basagaña, X., Alvarez-Pedrerol, M., Rivas, I., López-Vicente, M., De Castro Pascual, M., Su, J., Jerrett, M., Querol, X., Sunyer, J. (2015) Green spaces and cognitive development in primary schoolchildren. Proc Natl Acad Sci U S A. 112(26):7937-42.

Dijkstra, K., Kaschak, M. P., & Zwaan, R. A. (2007). Body posture facilitates retrieval of autobiographical memories. Cognition, 102(1), 139–149. Easton, A., Webster, L. A., and Eacott, M. J. (2012). The episodic nature of episodic-like memories. Learn. Memory 19, 146–150.

Eichenbaum, H. (2017) The role of the hippocampus in navigation is memory. J Neurophysiol. 117(4):1785-1796.

Ekstrom, A.D., Kahana, M.J., Caplan, J.B., Fields, T.A., Isham, E.A., Newman, E.L., Fried, I. (2003) Cellular networks underlying human spatial navigation. Nature. 425(6954):184-8.

Epstein, R., Harris, A., Stanley, D., Kanwisher, N. (1999) The parahippocampal place area: recognition, navigation, or encoding? Neuron. 23(1):115-25.

Godden, D., & Baddely, A. (1975). Context-dependent memory in two natural environments: on land and underwater. The British Journal of Psychology. 66 (3), 325–331.

Greenberg, D. L., & Verfaellie, M. (2010). Interdependence of episodic and semantic memory: evidence from neuropsychology. Journal of the International Neuropsychological Society : JINS, 16(5), 748–753.

Guerini, R., Marraffa, M., Meini, C., & Paternoster, A. (2019). Editorial: Self and Memory: A Multidisciplinary Debate. Frontiers in psychology, 9, 2676.

Hartley, T., Lever, C., Burgess, N., & O'Keefe, J. (2013). Space in the brain: how the hippocampal formation supports spatial cognition. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 369(1635).

Heschong, L., Wright, R., & Okura, S. (2002) Daylighting Impacts on Human Performance in School. Journal of the Illuminating Engineering Society. Volume 31 - Issue 2. Pages 101-114

Huiberts, L.M., Smolders, K.C., de Kort, Y.A. (2015) Shining light on memory: Effects of bright light on working memory performance. Behav Brain Res. 294:234-45.

Hullinger, R., O'Riordan, K., & Burger, C. (2015). Environmental enrichment improves learning and memory and long-term potentiation in young adult rats through a mechanism requiring mGluR5 signaling and sustained activation of p70s6k. Neurobiology of learning and memory, 125, 126–134.

Joye, Y., Steg, L., Ünal, A. B., & Pals, R. (2016). When complex is easy on the mind: Internal repetition of visual information in complex objects is a source of perceptual fluency. Journal of experimental psychology. Human perception and performance, 42(1), 103–114.

Kandel, E (2020). The disordered mind: what unusual brains tell us about ourselves. New York: Farrar, Straus and Giroux

Kato, Y., Endo, H., & Kizuka, T. (2009). Mental fatigue and impaired response processes: event-related brain potentials in a Go/NoGo task. International journal of psychophysiology: official journal of the International Organization of Psychophysiology, 72(2), 204–211.

Kaplan, S. (1995). The restorative benefits of nature: Toward an integrative framework. Journal of Environmental Psychology, 15(3), 169–182.

Kempermann, G., Kuhn, H. G., & Gage, F. H. (1997). More hippocampal neurons in adult mice living in an enriched environment. Nature, 386(6624), 493–495.

Leal-Galicia, P., Castañeda-Bueno, M., Quiroz-Baez, R., & Arias, C. (2008). Long-term exposure to environmental enrichment since youth prevents recognition memory decline and increases synaptic plasticity markers in aging. Neurobiology of learning and memory, 90(3), 511–518.

Madan, C. R., & Singhal, A. (2012). Using actions to enhance memory: effects of enactment, gestures, and exercise on human memory. Frontiers in psychology, 3, 507.

Martin-Ordas, G., & Atance, C. M. (2019). Adults' Performance in an Episodic-Like Memory Task: The Role of Experience. Frontiers in psychology, 9, 2688.

Mullally, S.L., Maguire, E.A. (2011) A new role for the parahippocampal cortex in representing space. J Neurosci. 31(20):7441-9.

Muzzio, I. A., Kentros, C., & Kandel, E. (2009). What is remembered? Role of attention on the encoding and retrieval of hippocampal representations. The Journal of physiology, 587(Pt 12), 2837–2854.

O’Keefe, J., Nadel, L. (1978) The Hippocampus as a Cognitive Map. Oxford: Oxford University Press

O'Keefe, J., Dostrovsky, J. (1971) The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34(1):171-5.

Ohline, S. M., & Abraham, W. C. (2019). Environmental enrichment effects on synaptic and cellular physiology of hippocampal neurons. Neuropharmacology, 145(Pt A), 3–12.

Park, S., & Chun, M. M. (2009). Different roles of the parahippocampal place area (PPA) and retrosplenial cortex (RSC) in panoramic scene perception. NeuroImage, 47(4), 1747–1756.

Ploran, E., J. & Wheeler, M. E. (2009) Episodic Memory. Encyclopedia of Neuroscience, 1167-1172

Radvansky, G. A., & Copeland, D. E. (2006). Walking through doorways causes forgetting. Memory & Cognition, 34, 1150–1156

Radvansky, G.A., Tamplin, A. K., & Krawietz, S. A. (2010). Walking through doorways causes forgetting: Environmental integration. Psychonomic Bulletin & Review, 17, 900–904.

Rosenzweig, M.R., Bennett, E.L., Hebert, M., Morimoto, H. (1978) Social grouping cannot account for cerebral effects of enriched environments. Brain Res 1978; 153: 563–576

Shishegar, N., Boubekri, M. (2016) Natural Light and Productivity: Analyzing the Impacts of Daylighting on Students’ and Workers’ Health and Alertness. Conference: International Conference on "Health, Biological and Life Science" (HBLS-16)At: Istanbul, Turkey

Shan, L.L., Guo, H., Song, N.N., Jia, Z.P., Hu, X.T., Huang, J.F., Ding, Y.Q., Richter-Levin, G., Zhou, Q.X., Xu, L. (2015) Light exposure before learning improves memory consolidation at night. Sci Rep. 5:15578.

Shenhav, A., Musslick, S., Lieder, F., Kool, W., Griffiths, T. L., Cohen, J. D., & Botvinick, M. M. (2017). Toward a Rational and Mechanistic Account of Mental Effort. Annual Review of Neuroscience, 40, 99–124.

Smith, D. M., & Mizumori, S. J. (2006). Hippocampal place cells, context, and episodic memory. Hippocampus, 16(9), 716–729.

Squire, L.R., Zola-Morgan, S. (1991) The medial temporal lobe memory system Science, 253, pp. 1380-1386

Taylor, R. P. (2006). Reduction of physiological stress using fractal art and architecture. Leonardo 39, 245–251.

Taylor, R. P. (2006). Reduction of physiological stress using fractal art and architecture. Leonardo 39, 245–251.

Taylor, R. P., Spehar, B., Van Donkelaar, P., & Hagerhall, C. M. (2011). Perceptual and Physiological Responses to Jackson Pollock's Fractals. Frontiers in Human Neuroscience, 5, 60.

Tulving, E. (1972). “Organization of memory,” in Organization of Memory, E. Tulving, and W. Donaldson (New York, NY: Academic Press), 381–403.

Tulving, E., & Markowitsch, H. J. (1998). Episodic and declarative memory: role of the hippocampus. Hippocampus, 8(3), 198–204.

Tulving, E. & Thomson, D. (1973). Encoding specificity and retrieval processes in episodic memory. Psychological Review, 80 (5): 352–373.

Ulrich, R. S. (1983). Aesthetic and Affective Response to Natural Environments. In: I. Altman, and J. F. Wohlwill (Eds.), Human Behavior and the Natural Environment (pp. 85-125). Plenum, New York, 85-125.

Vandewalle, G., Maquet, P., Dijk, D.J. (2009) Light as a modulator of cognitive brain function. Trends Cogn Sci. 13(10):429-38.

van Praag H. (2009). Exercise and the brain: something to chew on. Trends in neurosciences, 32(5), 283–290.

Voss, J. L., Bridge, D. J., Cohen, N. J., & Walker, J. A. (2017). A Closer Look at the Hippocampus and Memory. Trends in cognitive sciences, 21(8), 577–588.

Yonelinas, A. P., Ranganath, C., Ekstrom, A. D., & Wiltgen, B. J. (2019). A contextual binding theory of episodic memory: systems consolidation reconsidered. Nature Reviews. Neuroscience, 20(6), 364–375.

Zhu, H., Wang, N., Yao, L., Chen, Q., Zhang, R., Qian, J., Hou, Y., Guo, W., Fan, S., Liu, S., Zhao, Q., Du, F., Zuo, X., Guo, Y., Xu, Y., Li, J., Xue, T., Zhong, K., Song, X., Huang, G., … Xiong, W. (2018). Moderate UV Exposure Enhances Learning and Memory by Promoting a Novel Glutamate Biosynthetic Pathway in the Brain. Cell, 173(7), 1716–1727.e17.


561 visualizações
bottom of page